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Abstract. The effect of bulk dissipation on non critical sandpile models is studied using both multifractal
and finite size scaling analyses. We show numerically that the local limited (LL) model exhibits a crossover
from multifractal to self-similar behavior as the control parameters hext and ε turn towards their critical
values, i.e. hext → 0+ and ε → εc. The critical exponents are not universal and exhibit a continuous varia-
tion with ε. On the other hand, the finite size effects for the local unlimited (LU), non local limited (NLL),
and non local unlimited (NLU) models are well described by the multifractal analysis for all values of
dissipation rate ε. The space-time avalanche structure is studied in order to give a deeper understanding
of the finite size effects and the origin of the crossover behavior. This result is confirmed by the calculation
of the susceptibility.

PACS. 05.65.+b Self-organized systems – 05.70.Jk Critical point phenomena – 45.70.Ht Avalanches

1 Introduction

Sandpiles are prototype out of equilibrium dynamical
systems that usually present a self organized critical-
ity (SOC). This fundamental concept in modern physics
of non-equilibrium phenomena was introduced by Bak,
et al. [1–5] in order to explain the emergence of scaling
behavior and fractal structure observed in nature. They
proposed the SOC concept as one procedure to describe
the basic mechanism that creates generic scale-free behav-
ior [1,2]. This behavior emerges when an externally driven
dissipative system organizes itself into a state where all
spatial and temporal events are correlated over many or-
ders of magnitude. The main feature of the SOC is that
its details are not determined by fine-tuning or initial
conditions. Moreover, open boundary conditions or bulk
dissipation insure a balance between input and output
flow and allow to non-equilibrium stationary state [6–8].
The SOC is postulated be applicable over a wide vari-
ety of natural phenomena, spanning from microscopic to
the astrophysical scale. Bak and his co-workers used the
sandpile [1–4] model as a paradigm because of the crude
analogy between its dynamical rules and the way sand top-
ples when building a real sand pile. The sandpile model
illustrates the SOC for a large class of complex systems
[5 and references therein]: biology, economics, forest fire
models, earthquakes, the game of life, invasion percolation
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together with systems that might be expected to exhibit
self-similar and scale invariance behavior.

Sandpile systems are modeled as a regular array of
columns consisting of cubic sand grains; the usual for-
malization considers each lattice site to be characterized
by a state variable h(i), where h is the height or local
slope of the sand column at a giving site (i). Two mech-
anisms are crucial in such models: slow addition of new
grains, which is simply performed by selecting either a
random or a fixed column and increasing its height by one
unit, and the relaxation process. In relaxation process, if
the slope in column i exceeds a threshold value, then an
amount of column sand is redistributed among its neigh-
bors following a series of topples which may give rise to
an avalanche that subside after a finite period of time.
The avalanche size ‘S’ is giving by the number of toppling
sites. In SOC, the response to an external perturbation
results in avalanches of all sizes with power-law distribu-
tions of the form, D(s, L) ∼ s−τg(s/LD), where L is the
system size. The critical exponents τ and D, depend on the
model one defines. For some stochastic sandpile models,
the critical exponent τ varies continuously [9] by varying
the disorder in the system. It is believed that the two time-
scale separation [6,10,11] (deposition and relaxation) and
metastability are essential for the existence of scale in-
variance in these models. The dynamics of the sandpiles
have been intensively studied both theoretically [6,12] and
experimentally [13,14], and some exact results were de-
rived for Abelian sandpile models [15]. Originally, exper-
imental studies showed that the sandpile model leads to
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a clear disagreement with numerical simulations of theo-
retical models. Indeed, if the pile is tilted several degrees
above the angle of repose grains start to flow and the sys-
tem exhibits only a first order transition. On the other
hand, rice-pile experiments in quasi one-dimensional sys-
tems display SOC with a power-law distribution of the
avalanche size with critical exponent τ ≈ 2.02 [14], and
this will occur depending on the detail of the grain level-
dissipation.

Simple rules of the dynamics in sandpile models lead
to simple equations according to mean-field theory, which
is based on the single site approximation of the master
equation [6]. One may associate rates hext and ε, respec-
tively, with the addition and dissipation processes. The
inverse of the parameter hext is simply the typical waiting
time between different avalanches, i.e. τd ≈ 1/hext. In this
case, the criticality, which results from non local interac-
tions, is obtained by fine-tuning the control parameters as
in continuous phases transitions.

For a deeper understanding of the significance of SOC
a connection to conventional critical points has been il-
lustrated through some simple models [16]. As a result, it
was shown that the SOC can be understood as an aspect
of multiple absorbing state models since the criticality is
reached in the limit hext → 0 and ε → 0+ with hext/ε → 0
similar to Contact Process-like models, and the power-
law avalanche distribution is found to be a general feature
of models with many absorbing configurations [17]. On
the other hand, using an unified mean field theory the
main prediction is that criticality is ensured by the di-
vergence of the zero-field susceptibility which is giving by
χ = ∂ρa/∂hext, where ρ is the density of active sites. In
the limit of vanishing control parameters, the stationary
state displays scaling that is characteristic of SOC.

The effect of bulk dissipation has been studied in a
two dimensional dissipative height sandpile model, and
it was shown that the SOC behavior doesn’t occur for
discrete driven dissipative model while it was observed for
continuous ones given a particular choice of the dissipation
rate ε [8].

Our aim is to study numerically the effect of the bulk
dissipation on non critical one dimensional sandpile mod-
els that obey multifractal analysis, and show that in con-
trast to the previous dissipative systems, the dissipation
may influence the avalanche dynamics leading to SOC for
LL models. The outline of this paper is as follow: in Sec-
tion 2 we define the models, the methods used and explain
the problem of the multifractality, while Section 3 is de-
voted to the study of the dissipation effects on non critical
models defined in Section 2. In Section 4 we give a general
conclusion.

2 Models and methods

For our systems we assume integer heights h(i) at lattice
sites i = 1, 2...L, where L is the size of the system. The
local slope of the pile z(i) at site (i) is defined as the height

difference between two nearest neighbors:

z(i) = h(i) − h(i + 1). (1)

The boundary conditions of the system are reorganized
such that the grains can flow out of the system from the
right side only. The system consists of a plate of length L,
with a wall at i = 0 and an open boundary at i = L + 1:

z(i) = 0, if i = 0
h(i) = 0, if i > L.

The profile of the system evolves through deposition and
relaxation. In deposition, a particle is added to a random
site i and

h(i) → h(i) + 1. (2)

During relaxation, we look at all unstable columns of the
pile: a column i of the pile is considered active if z(i) > zc.
The number of grains N to be toppled is determined by
either the limited or the unlimited rule. In the case of lim-
ited model, the number N is fixed while for the unlimited
case, the number of toppled grains depends of the slope
at the active sites therefore N = z(i) − M , where M is
a fixed number. Some degrees of non conservation can be
introduced in the model by allowing a dissipation of en-
ergy during relaxation events. In a discrete energy model,
one can introduce a probability ε that the N transferred
particles in the relaxing process are annihilated. The re-
laxation can take place either according to the local (L)
or non local (NL) rule

h(i + 1) = h(i + 1) + N ; (L)
h(i + j) = h(i + j) + 1, j = 1...N. (NL)

Thus four different 1D sandpile models [18] may be
defined as follow:
1. Local limited model (LL),
2. Local unlimited model (LU),
3. Non local limited model (NLL),
4. Non local unlimited model (NLU).

In order to check the effect of dissipation under the
total size of avalanches F (which is defined as the to-
tal number of toppling sites) and the number of grains
that drop off the edge, D, we are interested in applying
two techniques to analyze our data. In the first technique,
where the system dynamics exhibit self-similarity behav-
ior, the probability distribution function (PDF) ρ(X, L)
of the events F and D is fit to the finite-size scaling form
represented by,

ρ(X, L) = L−βg(X/Lν), (3)

where β and ν are critical exponents associated with the
distribution ρ and the X quantity, respectively, and g is a
universal scaling function. This form results from the frac-
tal structure of the system that presents self-similar prop-
erties. Thus, the fractal analysis is successfully applied to
describe the finite size effects of such systems which ex-
hibit scale invariance.
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Fig. 1. The space-time representation of the avalanche for ε = 0. The dots represent the active sites: (a) example of 1D avalanche,
and (b) example of 2D avalanche. Consequently, the system exhibits a multifractal behavior as it presents two different compact
structures.

In the other technique, the PDFs are better fit with the
multifractal form [18–21] given by the f−α representation:

log10ρ(X, L)/log10(L/L0) =
f(log10(X/X0)/log10(L/L0)). (4)

where X0 and L0 are constants that depend on the value
of ε and α = log10(X/X0)/log10(L/L0). In the case where
f is a linear function, the probability distribution is then
described by only two critical exponents. Otherwise, there
is a whole spectrum of critical exponents.

The multifractal analysis is more than a simple fit. The
f −α representation is one of the solution of a differential
equation obtained from a local scale invariance hypothe-
sis [21]. On the other hand, it reflects the details of the
avalanche structures. Indeed, the study of various space-
time structures of avalanches in one-dimensional local lim-
ited sandpile model [22], without bulk dissipation, shows
that there are two compact types of space-time avalanches
(Fig. 1): 1D linear avalanches, and avalanches with back-
ward events which appear to have a 2D space-time struc-
ture. The main cause of the lack of self-similarity is the
presence of different structures and the effect of finite-
size, which under 1D and 2D avalanches is different. It
was found that the study of these two types of structures
separately gives two different set of critical exponents. As
a result, when the scaling is studied with the combined
effects of both avalanche types, it gives rise to a spectrum
of scaling indices which reveal the presence of multifrac-
tal behavior. The multifractal scaling represented by the
equation (4) has been found to describe the finite-size ef-
fects of the numerically evaluated probability distribution
function in a better way.

3 Dissipation effects on non critical sandpile
models

The models described above have been studied for ε =
0 [18]. It was shown that they display a multifractal be-
havior. We are interested in the effects of the dissipation
on these models, and we study whether they can display

critical behavior. We conclude by using the two techniques
described above that for the LL model, the FSS is better
for ε > εc = 0.04, while the multifractal analysis, rep-
resented by equation (4), gives a satisfactory fit to our
data for smaller values of bulk dissipation. However, for
the LU, NLL and NLU models, only the multifractal fit is
appropriate for all values of ε.

3.1 Local limited models

The local limited models were considered as the simplest
ones. During each step of an avalanche, the number of
grains N which falls to the nearest neighbor is kept con-
stant. Since the critical behavior of the system and the
avalanche dynamics are independent of the value of N, we
will take, for simplicity, N = 2. In order to have a good fit,
we try to adjust the exponents β and ν for the FSS analy-
sis, and the parameters X0 and L0 for the multifractal fit,
in such way that for each value of dissipation ε, the dis-
tributions ρ(F, L) and ρ(D, L) overlap for different values
of the system size L.

In Figure 2 we present the FSS of the drop num-
ber distribution ρ(D, L) for a dissipation rate ε = 0.1.
However, all curves corresponding to different values of
L overlap within the scaling fit (Eq. (3)), with βD = 0.01
and νD = 0.02. In order to emphasize the fact that the
FSS gives the best description of the finite size effects, we
analyse, in Figure 3a, the flip number distribution ρ(F, L)
for different values of the system size L. We obtain a good
fit for the critical exponents βF = 0.008 and νF = 0.04.
On the other hand, the multifractal analysis of ρ(F, L)
(Fig. 3b) shows that the data collapses only for small val-
ues of F with the exponents F0 = 1 and L0 = 1/15, while
for F0 = 25 and L0 = 1/55 they overlap only for large
values. Thus, we may conclude that for ε = 0.1 the FSS is
more adequate than the multifractal analysis.

In Figure 4 the data for both ρ(F, L) and ρ(D, L) have
been plotted for ε = 0.06. We find again, as for the pre-
vious case which corresponds to ε = 0.1, that the FSS
form gives an excellent fit over the whole range of the
data with βF = 0.21 and νF = 0.26 for the flip number
(Fig. 4a), and βD = 0.01 and νD = 0.04 for the drop
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Fig. 2. The FSS fit of ρ(D, L) for ε = 0.1 and for system sizes
ranging from L = 60 to L = 480. We note that the FSS gives
a good fit for our data, where νD = 0.02 and βD = 0.01.

number (Fig. 4c), and the mutlifractal analysis does not
give an appreciably better fit. It gives a good fit only for
intermediate values of the flip number (Fig. 4b) for small
values of the drop number (Fig. 4d) otherwise the data
does not collapse for different sizes L. For ε = 0.01, Fig-
ure 5a shows that the FSS analysis works well for small
values of F but significant discrepancies arise at larger val-
ues. There are two different scaling fits which look good
over limited range of data. The first one is obtained only
for small values of F with βF = νF = 0.38, while the
second one is localized for larger values with βF = 1.7
and νF = 1.2. In Figure 5b we have plotted the func-
tion log10ρ(F, L)/log10(18L) vs. log10(F )/log10(18L) for
different system sizes L. A good fit is obtained since all
the data collapse for different values of L. In order to em-
phasize the fact that the multifractal analysis presents the
appropriate fit, we show respectively in Figures 5c and 5d
the results of the FSS and the mutifractal analyses for
the drop number distribution ρ(D, L). As shown in this
figure, the multifractal analysis is a much better way to
describe the finite size effects than the analysis based on
a simple FSS.

The study of different space-time structures of
avalanches for the LL model reveals the existence of two
classes. For ε > εc, the bulk dissipation has a hitchhiker ef-
fect on the avalanches. The active sites frequently dissipate
their energy rather than relax to their nearest neighbor.
As a result, the avalanche space-time structures are quasi-
two-dimensional with very low compactness (Figs. 6a–b).
Thus, the FSS analysis gives the best fit because of the
quasi “linearity” of the avalanche structure. For ε < εc the
avalanche structures are more compact than the previous
ones (Figs. 6c–d). The relaxation is more frequent than
the dissipation thereby leading to more backward events
that appears to have a two-dimensional structure. Conse-
quently, the avalanche size distribution obeys multifractal

Fig. 3. (a) The FSS and (b) the multifractal analysis of ρ(F, L)
for ε = 0.1 and for system sizes ranging from L = 60 to L =
480. The simple finite-size-scaling is an adequate fit to the data
over the entire range of F .

analysis. For both cases, different structures are generated
by varying the dissipation rate ε. As a matter of fact, their
fractal dimension as well as the corresponding critical ex-
ponents β and ν vary continuously.

From the FSS and the multifractal techniques, we con-
clude that the LL model with a bulk dissipation energy
exhibits, at some critical value εc, a crossover from multi-
fractal to self-similar behavior. In both regions the critical
exponents vary continuously with the dissipation rate ε as
the space-time structure of the avalanches changes with ε,
producing a low compactness accompanied by a change
of the finite-size effects. The distribution function of the
flip number presents a power law behavior for high values
of ε and the critical exponent τ increases linearly with
increasing the dissipation rate (Fig. 7). The FSS tech-
nique was used in order to check if there are any scaling
laws between different critical exponents. As a result, we
note that the model presents non-universal behavior since
the quantity 2νF +βF decreases linearly with increasing ε
(Fig. 8). A numerical study of the zero field susceptibil-
ity χ (χ = ∂ρa/∂hext, where ρa is the density of active
sites) of the LL model with a giving value of the toppling
grains N, shows that it is singular at vanishing values of ε,
thereby signaling a long-range response function (Fig. 9).
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Fig. 4. (a–c) The FSS and (b–d) the multifractal analysis of ρ(F, L) and ρ(D, L), respectively, for ε = 0.06 and for system sizes
ranging from L = 128 to L = 512. The FSS gives the best fit of our data for all values of ε greater than a critical value εc.

Fig. 5. (a–c) The FSS and (b–d) the multifractal analysis of ρ(F, L) and ρ(D, L) respectively for ε = 0.01, and for system sizes
ranging from L = 128 to L = 512. The best fit is given by the multifractal analysis due to the fact that for ε < εc, the structure
of avalanches became compact and therefore the 1D and 2D structures begin to react differently.
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Fig. 6. By decreasing the level of the dissipation rate from (a) to (d), the structure of avalanches becomes more compact and
then the system goes from the situation where the dynamics present a fractal structure, to a multifractal behavior.

Fig. 7. The critical exponent τ versus the dissipation rate for
ε > εc where ρ(F ) presents a power law behavior.

The critical behavior is recovered in the limit of vanish-
ing driving field, corresponding to the locality breaking in
the dynamical evolution. For large values of the dissipa-
tion (ε > εc), the zero field susceptibility exhibits a power
law behavior, 1/ε, similar to usual sandpile models. For
ε → 0, it presents a faster increase than a simple power
law, thereby signaling a more complicated behavior. We
mention that for ε < εc, unlike the usual sandpile models,

Fig. 8. The variation of 2νF +βF versus the dissipation rate ε.
The scaling laws have been checked, and show that the system
presents a non-universal behavior where the critical exponents
are ε-dependent.

the density of active sites ρa does not vary linearly with
the external parameter hext. The behavior of χ vs. ε has
been studied for different values of the toppling grains
number N (Fig. 10), and it’s shown that the crossover
behavior is insensitive to the details of the system in the
case of LL models.
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Fig. 9. The log-log plot of the susceptibility χ(ε) = ∂ρa/∂hext

for a system with periodic boundary conditions, and sizes rang-
ing from L = 64 to L = 256. The straight line presents the
1/ε behavior. It was shown that the susceptibility presents two
different variations for low and high values of ε. The inset de-
limits the region where the 1/ε behavior does not fit with χ.

Fig. 10. The log-log plot of the susceptibility χ(ε), for different
values of the toppling grains N and for a system size L = 128.
As a result, the dynamics of the system is independent of the
details of the system.

3.2 Local unlimited and non local models

The investigations of the LU, NLL and NLU models shows
that the multifractal analysis is the most appropriate tech-
nique, for all values of ε, and gives a good fit for different
system sizes. On the other hand, the zero field suscep-
tibility χ(ε) does not exhibit 1/ε–like power law behav-
ior. It displays rather different behavior characterized by
some function f(ε) that diverges (at vanishing values of

ε) more quickly than any power law behavior. The varia-
tion of the number of grains N that flip for any relaxation
process, and the non locality presented by these models,
preserve the non critical power law behavior even for high
values of the dissipation rate. Since the dynamics of these
models under variable and non local rules generate back
avalanches that are responsible for an appropriate multi-
fractal fit, we believe that the dissipation can neither elim-
inate nor reduce them considerably. Thus, a non power
law critical behavior of the susceptibility is proposed. The
critical exponents that give the appropriate multifractal
fit vary continuously by varying ε.

4 Conclusion

To summarize, we have studied the behavior of one dimen-
sional sandpile models with bulk dissipation. The various
distribution functions of events, for each value of the dis-
sipation rate ε, depend on the system size. However, an
investigation of the scaling properties of the one dimen-
sional LL, LU, NLL and NLU models have been estab-
lished using both simple FSS and multifractal analyses of
our data. Using both FSS and multifractal techniques, we
have shown that for the LL model the first one works bet-
ter for high values of the dissipation rate ε > εc, while the
second gives a more appropriate fit for low values of ε. The
analysis of the space-time structure of avalanches shows
that such structures are quasi-two-dimensional for high
values of ε, whereas they become more compact 2D ar-
eas for low values. Consequently, the self-similarity breaks
down for ε ≤ εc, leading to multifractal behavior result-
ing from two kinds of space-time structures (1D and 2D
compact avalanches) which start to react differently. In
order to emphasize the result obtained using the tech-
niques mentioned above, the crossover behavior has been
checked by the calculation of the zero field susceptibility
χ(ε) in view of the fact that it exhibits 1/ε–like power
law behavior for large values of ε, while for small values
such behavior is replaced by a rather different one. We
note that since the crossover behavior is localized at very
low values of ε, and that the system deviates slowly from
the power law behavior, the susceptibility, the FSS and
multifractal techniques do not allow high precision of the
estimated value εc = 0.04.

The LU, NLL and NLU models do not display any
crossover behavior, and they preserve the multifractal
analysis since their intrinsic dynamics produce frequent
back avalanches (for all values of ε) that are responsible
for such behavior. The critical exponents obtained either
within the multifractal analysis or the FSS vary continu-
ously with the value of the dissipation rate ε.
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